

AFRL-RI-RS-TR-2007-280
Final Technical Report
January 2008

GESTURE RECOGNITION DEVELOPMENT FOR
THE INTERACTIVE DATAWALL

Howard University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2007-280 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

PETER JEDRYSIK JAMES W. CUSACK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 08
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 05 – Sep 07
5a. CONTRACT NUMBER

FA8750-05-C-0257

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

GESTURE RECOGNITION DEVELOPMENT FOR THE INTERACTIVE
DATAWALL

5c. PROGRAM ELEMENT NUMBER
N/A

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
BA

6. AUTHOR(S)

Naren Vira

5f. WORK UNIT NUMBER
05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Howard University
2400 6th St NW
Washington DC 20059-0002

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2007-280

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 07-0712

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Hand gestures provide a useful interface for humans to interact with not only other humans but also machines. Especially for a high
degree-of-freedom manipulation tasks such as the operation of 3D objects in virtual scenes, the traditional interface composed of a
keyboard and mouse is neither intuitive nor easy to operate. In collaborative environments using large screen displays for display of
both 3D and 2D information, participants would benefit greatly from an interface that is unencumbered, natural, and effective for
communication during discussions. The goal of this project was to investigate the feasibility of implementing an image triangulation
technique to track the position of a passive device pointing towards a large screen display.

15. SUBJECT TERMS
Gesture Recognition, Interactive Display, Human-Computer Interaction

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Peter A. Jedrysik

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

27
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

Table of Contents

Executive Summary 1
1 Scope 1
2 Introduction 2
3 Recognition and Tracking a Passive Pointer 3
 3.1 Technical Discussion 3
 3.2 Color Representation and Detecting Two-Color Ends of a Pointer 6
 3.3 Three-Dimensional Triangulation Technique 8
 3.4 Two Intersecting Line Problem 9
 3.5 Accounting for a Camera Rotations 10
 3.6 Point of Projection on the DataWall 12
 3.7 Equation of a Plane Describing the DataWall 13
 3.8 Intersection of Line and Plane 13
 3.9 Recognition of a Hand Gesture 14
4 Computer Simulation 15
5 Camera Calibration 16
6 Image Acquisition and API Development 17
 6.1 Hardware Setup 17
 6.2 API Development 18
7 Conclusion 20
References 21

List of Figures

Figure 1 Gesture Interpretation System 2
Figure 2 Non-Parallel Axes Camera Model 3
Figure 3 The Epipolar Plane 4
Figure 4 The Parallel Axes Camera Model 6
Figure 5 Color Vector Representation in RGB Space of 7

 Matching Pixels in Two Different Images
Figure 6 Ray Casting Configuration 8
Figure 7 Coordinate Computation for Two Lines of Intersection 9
Figure 8 Camera’s Pitch, Yaw, and Roll Axes 11
Figure 9 Three-Dimensional Pointer Projection on Datawall 12
Figure 10 Definition of Reference Frames for Testing 15
Figure 11 Image Acquired after Camera (1920 x 1080 pixels) 17
Figure 12 X64-CL iPro Frame Grabber Cable Connection Calibration 17
Figure 13 Command Output Window 19
Figure 14 Acquisition of Two Simultaneous Images from Two 19
 Different Cameras

 ii

Executive Summary
The use of hand gestures provides an attractive alternative to cumbersome
interface devices for human-computer interaction. In particular, visual
interpretation of hand gestures can help in achieving the ease and naturalness
desired. This has motivated a very active research area concern with computer
vision-based analysis and interpretation of hand gestures. To enhance
multimedia capabilities in an interactive large-screen display environment such
as the Air Force Research Laboratory (AFRL) DataWall [1], it is imperative to
explore practical and useful gesture recognition technology. Also, due to the
large screen size (12' x 3') of the DataWall, oftentimes, it is difficult to precisely
identify what information presented on the screen, someone in the audience is
pointing to, during professional meetings or briefings. On the same token, a
presenter pointing at information on the display by hand during the presentation
cannot clearly be visualized and understood in the audience. Both scenarios
result into a loss of effective communication.

Implementing gesture tracking technology for the DataWall environment is a
multiyear effort. The first step described in this report was to concentrate on
investigating the feasibility of utilizing an image triangulation technique for
accurately positioning and tracking a passive pointer pointing towards the
DataWall. The pointer is marked with two distinct colors and can be tracked using
two high resolution video cameras. The acquired images are then analyzed
online to compute the pointer’s projected coordinates on the DataWall.

 1

1 Scope
The scope of this effort is to develop technology for building an integrated
interactive display environment and intelligent interface for the Air Force
Research Laboratory (AFRL) DataWall utilizing image triangulation technique to
track a passive device pointing towards the DataWall.

2 Introduction
Hand gestures provide a useful interface for humans to interact with not only
other humans but also machines. Especially for high degree-of-freedom
manipulation tasks such as the operation of 3D objects in virtual scenes, the
traditional interface composed of a keyboard and mouse is neither intuitive nor
easy to operate. For such a task, we consider direct manipulation with hand
gestures as an alternative method. This would allow a user to directly indicate 3D
points and issue manipulation commands with his/her own hand.

The idea led to many gesture-based systems using glove-type sensing devices in
the early days of virtual reality research. Such contact-type devices, however, are
troublesome to put on and take off, and continuously wearing such devices for a
long time fatigues users. To overcome these disadvantages vision researchers
tried to develop non-contact type systems to direct human hand motion [2, 3, and
4]. These works had some instability problems particular to vision based
systems. The most significant problem is occlusion. Vision systems
conventionally require match of detected feature points between images to
reconstruct 3D information. However, for moving non-rigid objects like a human
hand, detection and matching of feature points is difficult to accomplish correctly.

Providing a computer with the ability to interpret a human hand is a step toward
more natural human-machine interactions. Existing input systems augmented
with this, as well as such other human-like modalities such as speech recognition
and facial expression understanding, will add a powerful new dimension to the
range of future computer applications and the accessibility of existing ones. A
wide spectrum of research is underway on the problem of gesture interpretation.
The primary reason for the advancement is continuously falling expense of
hardware and image grabbing and processing. Even color processing in now
available and it is fast enough for pattern recognition.

Currently there is no universal definition of what a gesture recognition system
should do or even what is a gesture. Our definition of gesture form perspective of
the computer is simply a temporal sequence of images of a hand. An element
from a finite set of static hand poses is the expected content with an image

 2

frame. A gesture is, therefore, a sequence of static hand poses. Poses are
assumed to contain the identity of the hand shape and (possibly) the orientation,
translation and distance from camera information. The spatio-temporal nature of
the gesture data make the gesture state immeasurable at a given instance in
time, but for each time step we can determine the static hand pose. A general
gesture recognition system is depicted in Figure 1. Visual images of gestures are
acquired by one or more cameras. They are processed in the analysis stage
where the gesture model parameters are estimated. Using the estimated
parameters and some higher level knowledge, the observed gestures are
inferred in the recognition stage. The grammar provides a set of rules on which
the gestures are interpreted.

The project of developing and implementing gesture tracking technology for the
interactive DataWall is an ambitious project and will take several years of effort. It
encompasses several major steps which can be grouped into two major
categories:

A. Recognition and tracking of a color pointer
B. Recognition and tracking of a hand gesture

This work was devoted towards category A in which a passive color pointer
marked with two distinct colors will be tracked using two high resolution cameras.
The work can alternatively be viewed as the development of virtual pointer
technology as opposed to commonly used laser pointer. The methodology is
described in the following section.

Figure 1 Gesture Interpretation System

 3

3 Recognition and Tracking a Passive Pointer

3.1 Technical discussion

The procedure for recognition and tracking of a passive pointer marked with two
distinct colors is described in this section based on the theory of image
processing and analysis. Consider a system with two cameras of focal length f
and baseline distance b as shown in Figure 2. The optical axes of the two
cameras are converging with an angle θ and that all geometrical parameters (b, f,
and θ) are known or estimated using a camera calibration technique [5-8]. A
feature in the scene depicted at the point P is viewed by the two cameras at
different positions in the image planes (I1 and I2). The origins of the each camera
coordinate system is located at the camera’s center which is distance f away
form the corresponding image planes I1 and I2, respectively. It is assumed,
without loss of generality, that the world coordinate system (Cartesian
coordinates X, Y, and Z) coincides with the coordinate system of camera 1 (left
camera), while the coordinate system of camera 2 (right camera) is obtained
from the former through rotation and translations. The plane passing trough the
camera centers and the feature point in the scene is called the epipolar plane.
The intersection of the epipolar plane with the image plane defines the epipolar
line as shown in Figure 3. For the model shown in the figure, every feature in one
image will lie on the same row in the second image. In practice, there may be a
vertical disparity due to misregistration of the epipolar lines. Many formulations of
binocular stereo algorithms assume zero vertical disparity.

Figure 2 Non-Parallel Axes Camera Model

 4

The point P with the world coordinates (X, Y, and Z) is projected on image plane
I1 as point (x1, y1) and image plane I2 as point (x2, y2) as illustrated in Figure 2.
Then, assuming a perspective projection scheme, a simple relation between the
camera coordinates (x1, y1) and world coordinates (X, Y, and Z) can be obtained
as

x1 = f *X / Z and y1 = f *Y / Z (1)

Similarly, we can write

x2 = f * x2^ / z2^ and y2 = f * y2^ / z2^ (2)

Where, coordinate system of camera 2 (x2^, y2^ and z2^) is related with respect to
the world coordinate system by simply translation and rotation as

Figure 3 The Epipolar Plane

 5

x2^ = c X + s Z – b c’
y2^ = Y (3)
z2^ = -s X + c Z + b s’

Here, symbols c = cos (θ) and s = sin (θ), c’ = cos (θ/2) and s’ = sin (θ/2) are
used. Substituting Eq. (3) into Eq. (2), we can write

x2 = f [(c X + s Z – b c’) / (-s X + c Z + b s’)] (4)
y2 = f [Y/(-s X + c Z + b s’)]

Combining Eq. (1) and Eq. (4), lead to

x2 = f [(f s +x1 c)Z – f b c’] / [(f c – x1 s)Z + f b s’] (5)
y2 = (f Z y1) / [(f c – x1 s)Z + f b s’]

It can be observed for Eq. (5) that the depth Z of P can be estimated if its
projections (x1, y1) and (x2, y2) on image planes I1 and I2, respectively, are known.
That is for a given point (x1, y1) on I1, its corresponding point (x2, y2) on I2 should
be found. Hence, defining a disparity vector d = [dx, dy]T at location (x2, y2) of
camera 2 with respect to camera 1

dx = x1 – x2 (6)
 f b (f c’ + x1 s’) + [x1(f c – x1s) - f (f s + x1c)]Z
 =

 (f c – x1 s)Z + f b s’

dy = y1 – y2 (7)

 f b s’ y1 +[(f c – x1 s) - f] y1 Z
 =

 (f c – x1 s)Z + f b s’

If the disparity vector d is known, Eqs. (6-7) reduce to an over determined linear
system of two equations with a single unknown, Z (the depth) and a least-
squares solution can be obtained [9]. When cameras axes are parallel (i.e., θ =
0) the above equations (Eqs. (6-7)) can be simplified to (see Ref. [10] and Fig. 5)

dx = f b / Z and dy = 0 (8)

Thus, the depth at various scene points may be recovered by knowing disparities
of corresponding image points.

 6

3.2 Color Representation and Detecting Two-Color Ends of a
Pointer

Each pixel in RGB color space can be expressed in a vector form as

P (I, J) = R (I, J) i + G (I, J) j + B (I, J) k (9)

The image pixel coordinates are (I, J) and i, j, and k are unit vectors along R, G,
and B color space, respectively. Since we are only interested in matching the
pointer’s red and blue color ends of each image respectively, Equation (9) can be
simplified as

P (I, J) = R (I, J) (10)

when the red color end is considered and

P (I, J) = B (I, J) (11)

for the blue color end. Note that P (I, J) is mathematically scalar quantity. We can
now scan each image to find all pixels and corresponding locations for particular
color end. We compute the centroid of each color end. That is for the red color
end as shown in Figure 5, image 1 (left), we have

Figure 4 The Parallel Axes Camera Model

 7

P1 (I, J) = R1 (Imid, Jmid) (12)

Where,

Imid = Imin + (Imax – Imin)/2

Jmid = Jmin + (Jmax – Jmin)/2

The terms mid, min and max correspond to the mid point, minimum location and
maximum location of the color within that particular color end. Note that the
image has to be searched to find the min and max locations. The term centroid
and mid point of the color end are interchangeable because of the two-
dimensional coordinate system representation. Similarly, we can compute the
centroid of the red color end in image 2 (right) as

P2 (x, y) = R2 (Imid, Jmid) (13)

We assume that the centroid points P1 (I, J) and P2 (I, J) represent the matching
points. This assumption is valid because the pointer dimensions are very small in
comparison with the dimension of the DataWall room. Note the image size. Thus,
the implication is that the process of disparity analysis is not required and the
task of finding matching pixel is considerably simplified. The same analysis can
be applied for finding the matching points corresponding to the blue color end of

Figure 5 Color Vector Representation in RGB Space of Matching Pixels in Two Different Images

 8

the pointer. It should be emphasized that we deliberately chose two distinct color-
ends to simplify and speed up the process of image scanning. One can choose
other pixel matching methods depending upon their application. Knowing the x-
and y- coordinates of each centroid point of the pointer in a single image; we can
mathematically pass a line through these two points to describe a pointer in a 2D
space. Now the process of triangulation in needed to compute the three-
dimensional coordinates of the pointer from these two images (i.e., four centroid
points).

3.3 Three-dimensional Triangulation Technique

We apply ray casting analysis to triangulate three-dimensional coordinates of
each image pixel point in a space as it viewed by two cameras with respect to a
chosen reference frame. Without loss of generality, the reference fame could be
at one of the cameras’ center. We have chosen camera 2 center location as the
frame of reference. Each ray is cast from the viewpoint (here, center of the
camera) through each pixel of the projection plane (here, image planes 1 and 2)
into the volume dataset. The two rays wherever they intersect in a 3D space
determines the coordinates of a point viewed in both camera as shown in Figure
6. By connecting all intersecting points in the volume dataset, we can generate a
3D point cloud floating in space. We utilize only four points (two in each image) to
find the 3D position of the pointer.

Figure 6 Ray Casting Configuration

 9

3.4 Two Intersecting Line Problem

The common point coordinate computation of rays reduces to a problem of two
line intersection each defined by two points. One point on the line is defined by
the camera center and the second point by a pixel in the image plane (i.e. P1 or
P2 in Figure 7). For the point P1 of image 1, the coordinates of point P2 in image 2
are already chosen based on the explanation presented earlier.

Considering a general reference frame (x, y, z) as shown in Figure 7, point sets
(C1, P1) and (C2, P2) are situated on line1 and 2, respectively. Since the points
P1 (I, J) and P2 (I, J) are in pixel coordinates, they need to be converted into
linear measurements by the transformation:

x distance per pixel = f *tan (half view angle of camera)

 (14)
(Image width in pixel) / 2

Figure 7 Coordinate Computation for Two Lines of Intersection

 10

Similarly, y distance per pixel can be correlated. Note that f denotes camera focal
length. Because we are interested in computing coordinates of point P, let us
define each point on the lines as

P = x i + y j + z k (15)
P1 = Px1 i + Py1 j + Pz1 k
P2 = Px2 i + Py2 j + Pz2 k
C1 = C x1 i + C y1 j + C z1 k
C2 = C x2 i + C y2 j + C z2 k

Where i, j, and k are unit vectors along x, y and z axes, respectively. With the
condition for the four points to be coplanar (the lines are not skewed), we can
write

(C2 – C1) • [(P1 – C1) x (P2 – C2)] = 0 (16)

Where symbols • and x represent vector dot and cross product respectively. If s
and t are scalar quantities then the common point can be represented
parametrically as

P = C1 + s (P1 – C1) = C1 + s A (17)

or

P = C2 + t (P2 – C2) = C2 + t B

Where s is given by

[(C2 - C1) x B)] • (A x B)
s =

| A x B |2

3.5 Accounting for a Camera Rotations

Six degrees-of-freedom are required to describe a point in the three-dimensional
space uniquely. One can choose three linear and three rotational coordinates.
The three rotational motions of the camera can be accounted for while computing
uniquely the pointer’s position in the 3D space. Defining each camera’s axis
rotation as pitch, yaw and roll along x, y and z axes, respectively, as shown in
Figure 8, we can write rotational transformations as

 11

Where, the notations S(angle) = sin (angle) and C(angle) = cos (angle) are used.
The combined transformation pitch-yaw-roll can be written as PYR

Figure 8 Camera’s Pitch, Yaw, and Roll Axes

(18)

(19)

(20)

(21)

 12

The world coordinates (x, y, z) are, thus, related to camera’s view coordinates (x’,
y’, z’) as

Note that inverse transformation is considered to account for the camera
rotations.

3.6 Point of Projection on the DataWall

Knowing the three-dimensional coordinates of each end of the pointing device
center (red and blue), we can identify and represent the pointer in a 3D space by
a line passing through these two points. The pointing device passing through the
points Pr and Pb as depicted in Figure 9. The projection of this line on a plane
described by DataWall is of our interest. The problem is now reduced to finding
coordinates of intersecting point between line and a plane as shown by point
Pi in Figure 9.

Figure 9 Three-Dimensional Pointer Projection on Datawall

(22)

 13

3.7 Equation of a Plane Describing the DataWall

The standard equation of a plane in a 3D space is:

Ax + By + Cz + D = 0 (23)

Where, the normal to the plane is the vector (A,B,C). Given three points in space
D1(x1,y1,z1), D2(x2,y2,z2), D3(x3,y3,z3) the equation of the plane through these
points is given by the following determinants.

Here, three points D1, D2 and D3 describes the DataWall referenced in the
camera 2 coordinate system. Expanding the above gives
A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2) (25)
B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2)
C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)
D = - [x1 (y2 z3 - y3 z2) + x2 (y3 z1 - y1 z3) + x3 (y1 z2 - y2 z1)]

Note that if the points are colinear then the normal (A,B,C) as calculated above
will be (0,0,0). The sign of s = Ax + By + Cz + D determines which side the point
(x,y,z) lies with respect to the plane. If s > 0 then the point lies on the same side
as the normal (A,B,C). If s < 0 then it lies on the opposite side, if s = 0 then the
point (x,y,z) lies on the plane.

3.8 Intersection of Line and Plane

The parametric representation of the equation of the line passing through points
Pr (rx, ry, rz) and Pb (bx, by, bz) is made as

P = Pr + u (Pb - Pr) (26)

Where, Pr and Pb are the center of red and blue color ends of the pointing
device. The point of intersection of the line and plane can be found by solving the
system of equations defined above (i.e., Eqs (23) and (26)). That is

(24)

 14

A (rx + u (bx - rx)) + B (ry + u (by - ry)) + C (rz + u (bz - rz)) + D = 0 (27)

Solving for u

 A*rx + B*ry + C* rz + D
u = (28)

A (rx – bx) + B(ry – by) + C(rz – bz)

Now plug it back into the equation of the line to get the point of intersection, Pi
defined in Figure 9. It is reminded that when the denominator is 0 in u then the
normal to the plane is perpendicular to the line. Thus the line is either parallel to
the plane and there are no solutions or the line is on the plane in which case are
infinite solutions.

3.9 Recognition of a Hand Gesture

Hand gestures can be classified into two classes: (1) static hand gestures which
relies only on the information about the angles of the figures (hand posture) and
(2) dynamic hand gestures which relies not only on the fingers’ flex angle but
also the hand trajectories and orientations. In general, a hand gesture is
expressed as a time series of hand position, orientation, and shape. Hand shape
is most difficult to recognize, though, how it is recognized depends on how it is
utilized. Since our goal is to develop a non-contact hand gesture recognizer
which can be utilized in a virtual environment, it is sufficient to discriminate from
among only a few typical hand shapes, such as the number of extended fingers,
as graphical commands.

For gesture interpretation system, there are four main components: gesture
modeling, gesture analysis, gesture recognition and gesture based application
systems. The fist phase of a recognition task (whether considered explicitly or
implicitly) is choosing a model of the gesture. The mathematical model may
consider both the spatial and temporal characteristic of the hand and hand
gesture. Once the model is decided upon, an analysis stage is used to compute
the model parameters form input image features. These parameters constitute
some description of the hand pose or trajectory and depend on the modeling
approach used. Among the important problems involved in the analysis are those
of hand localization, hand tracking, and selection of suitable image features. The
computation of model parameters is followed by gesture recognition. Here, the
parameters are classified and interpreted in the light of the accepted model and
perhaps the rules imposed by some grammar. Evaluation of a particular gesture
recognition approach encompasses accuracy, robustness, and speed, as well as
the variability in the number of different classes of hand/arm movements it
covers.

 15

4 Computer Simulation
The feasibility of utilizing an image triangulation technique for accurately
positioning and tracking a virtual pointer pointing towards DataWall was
investigated. The modeling and simulation task was carried out in which synthetic
images of the pointer (generated using Autodesk® 3ds Max®) were input to a
Microsoft® Visual C++ program. Based on the theory described in the previous
section a Visual C++ program was written which requires two cameras’ images as
an input and determines the 3D coordinates of the pointer as well as the pointer’s
pointing projection on the DataWall. The analysis is done on high resolution static
images utilizing different room configurations. The projected locations of a virtual
pointer on the DataWall were compared with the known locations retrieved from
the 3ds Max® models. The results were promising and the pointing accuracy of
the pointer on the DataWall was in the neighborhood of 0.06 feet. This accuracy
is regarded to be well within acceptable range.

 Figure 10 describes various reference frames defined for testing the present
methodology. The output results of the C++ algorithms are divided into three
groups. One, the pointer’s pointing position accuracy on the DataWall without
rotating any cameras; two, when camera rotations are included in the analysis;
and three when pointer’s length variations are considered. Table 1 presents five
different scenarios for the group one. The highlighted pink area describes
changes in the configuration with respect to the case # 1. The output of the
algorithm (the pointer’s projection on the DataWall) using triangulation method is
compared with the corresponding retrieved values from 3ds Max® program.

Figure 10 Definition of Reference Frames for Testing

 16

The worse case scenario is off by 0.041 feet in y coordinate. The absolute
average for all five cases is 0.006 feet and 0.034 feet in the x- and y-
coordinates, respectively. These accuracies are considered reasonable for the
specified goals. The simulation results are tabulated in Table 1.

5 Camera Calibration
The camera image quality should be high enough for the proposed project
methodology to work. Commercially available video cameras capable of
capturing images of 1920 x 1080 pixels at 60 frames per second were used. The
cameras were a very new product at the time with a limited user interface for
configuration. As a result there was some difficulty getting an acceptable image
output from the cameras. The supplier was contacted and per their suggestion,
the camera’s processing system was configured in a HyperTerminal mode. With
many arbitrary trials, we were successful in getting improved images (see Figure
11 below).

Table 1 Positioning Accuracy Comparison

 17

6 Image Acquisition and API Development

6.1 Hardware Setup

The system was configured to acquire two camera images simultaneously by
installing two frame grabbers, X64-CL_iPro in a Dell 470 workstation. The cable
connection to the frame grabber is shown in Figure 12 below.

Figure 11 Image Acquired after Camera Calibration (1920 x 1080 pixels)

Figure 12 X64-CL iPro Frame Grabber Cable Connection

 18

DALSA Coreco’s Sapera LT 5.3 software was installed on the computer system.
Furthermore, all other necessary application programs were installed. The API
described below was developed based on Microsoft’s Visual C++ NET 2003.

6.2 API Deployment

The TwoCam – Stage 1 API views two cameras simultaneously when they are
attached to two different frame grabbers. The program grabs images from a
camera into a buffer in the host computer’s memory using Sapera LT ++
Acquisition and Buffer objects and then Transfer object to link them. Also, a View
object is used to display the buffer.

For each camera class the following objects were created:

Acquisition object
Buffer object
Transfer object
View object

Note that separate class is needed for each camera. The program runs in a
continuous mode via XferCamera = Grab () object statement. If we use
XferCamera = Snap () object statement, the program snaps the view scene and
terminates. This program mode is useful for static analysis.

The program generates two outputs. One, specific parameters that were utilized
in run mode are displayed in a command window as shown below (Figure 13):

 19

The second output is dumped in a text file for further analysis and use. The
program also displays two viewing windows. The camera viewing window for
each camera is shown below (Figure 14). Here, a “test pointer” is being viewed
simultaneously with both cameras.

Figure 13 Command Output Window

Figure 14 Acquisition of Two Simultaneous Images from Two Different Cameras

 20

7 Conclusion
An initial attempt was made with some success to develop an API for
triangulating two images in order to track the pointing position of a passive
pointer pointing toward the DataWall screen. Images are acquired and displayed
simultaneously. The next step will require each image pixel to be split up into
RGB color for further analysis.

 21

References:

[1] P. Jedrysik and R. Alvarez, Advanced Displays and Intelligent Interfaces
(ADII), AFRL-IF-RS-TR-2006-230, July 2006.

[2] B.Moghaddam and A. Pentland, “Maximum Likelihood of Detection of Faces
and Hands,”Proceeding of International Workshop on Automatic Face and
Gesture Recognition, 1995, pp. 122-128.

[3] P.Cipolla and N. Hollinghurst, “Uncalibrated Stereo Vision with Pointing for a
Man-Machine Interface,” Proceedings of IAPR Workshop on Machine Vision
Applications, 1994, pp. 163-166.

[4] L. Gupta and S. Ma, “Gesture-Based Interaction and Communication:
Automated Classification of Hand Gesture Contours,” IEEE Transactions on
System, Man an Cybernetics – Part C: Applications and Reviews, Vol. 31, No.1,
Feb 2001, pp.114 – 120.

[5] R. Tsai, “An Efficient and Accurate Camera Calibration Technique for 3D
Machine Vision,” Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Miami Beach, FL., 1986, pp. 364 – 374.

[6] O.Faugeras and G. Toscani, “The Calibration Problem for Stereo,
International Proceedings of CVPR, 1986, pp. 15 –20.

[7] B. Caprile and V. Torre, “Using Vanishing Points for Camera Calibration,”
International Journal of Computer Vision, Vol. 3, 1990, pp. 127 – 140.

[8] S. Maybank and O. D. Faugeras, “A Theory of Self-Calibration of a Moving
Camera,” International Journal of Computer Vision, Vol. 8, 1992, 123 – 151.

[9] D. Tzovaras, N. Grammalidis and M. G. Stromtzis, “Object-based Coding of
Stereo Image Sequences using Joint 3D Motion / Disparity Compensation,” IEEE
Transaction on Circuits System Video Tech., Vol. 7, April 1997, pp. 312 – 327.

[10] R.Jain, R. Kasturi and B. Schunck, Machine Vision, Book, McGraw Hill, Inc.,
1995.

[11] N. Vira, “3D Stereoscopic Image Reconstruction,” Research Report to U. S.
Air Force,August 2003, Contract No. 28459.

[12] N. Vira, “Use of JView in 3D Digital Color Image Reconstruction and
Visualization,”ASME Design Engineering Technical Conferences and Computers

 22

and Information Engineering Conference, Salt Lake City, Utah, September 28 –
October 2 2004, DETC2004 – 57668, pp. 1 –10.

